3.4基本不等式(第一课时)
一、教学目标
1.通过两个探究实例,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景,体会数形结合的思想;
2.进一步提炼、完善基本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基本不等式的认识,提高逻辑推理论证能力;
3.结合课本的探究图形,引导学生进一步探究基本不等式的几何解释,强化数形结合的思想;
4.借助例1尝试用基本不等式解决简单的最值问题,通过例2及其变式引导学生领会运用基本不等式的三个限制条件(一正二定三相等)在解决最值中的作用,提升解决问题的能力,体会方法与策略.
以上教学目标结合了教学实际,将知识与能力、过程与方法、情感态度价值观的三维目标融入各个教学环节.
二、教学重点和难点
重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式 的证明过程;
难点:在几何背景下抽象出基本不等式,并理解基本不等式.
三、教学过程:
1.动手操作,几何引入
学生阅读课本看2002年在北京召开的第24届国际数学家大会会标,会标是根据我国古代数学家赵爽的“弦图”设计的,该图给出了迄今为止对勾股定理最早、最简洁的证明,体现了以形证数、形数统一、代数和几何是紧密结合、互不可分的.
探究一:在这张“弦图”中能找出一些相等关系和不等关系吗?
在正方形中有4个全等的直角三角形.设直角三角形两条直角边长为,
那么正方形的边长为.于是,
4个直角三角形的面积之和,
正方形的面积.
由图可知,即.
探究二:先将两张正方形纸片沿它们的对角线折成两个等腰直角三角形,再用这两个三角形拼接构造出一个矩形(两边分别等于两个直角三角形的直角边,多余部分折叠).假设两个正方形的面积分别为和(),考察两个直角三角形的面积与矩形的面积,你能发现一个不等式吗?
通过学生动手操作,探索发现:
2.代数证明,得出结论
根据上述两个几何背景,初步形成不等式结论:
若,则.
若,则.
学生探讨等号取到情况,教师演示几何画板,通过展示图形动画,使学生直观感受不等关系中的相等条件,从而进一步完善不等式结论:
(1)若,则;(2)若,则
请同学们用代数方法给出这两个不等式的证明.
证法一(作差法):
,当时取等号.
(在该过程中,可发现的取值可以是全体实数)
证法二(分析法):由于,于是
要证明 ,
只要证明 ,
即证 ,
即 ,该式显然成立,所以,当时取等号.
得出结论,展示课题内容
基本不等式:
若,则(当且仅当时,等号成立)
若,则(当且仅当时,等号成立)
深化认识:
称为的几何平均数;称为的算术平均数
基本不等式又可叙述为:
两个正数的几何平均数不大于它们的算术平均数
3.几何证明,相见益彰
探究三:如图,是圆的直径,点是上一点,,.过点作垂直于的弦,连接.
根据射影定理可得:
由于Rt中直角边斜边,
于是有
当且仅当点与圆心重合时,即时等号成立.
故而再次证明:
当时,(当且仅当时,等号成立)
(进一步加强数形结合的意识,提升思维的灵活性)
4.应用举例,巩固提高
例1.(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?
(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?
(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化)
对于,
(1)若(定值),则当且仅当时,有最小值;
(2)若(定值),则当且仅当时,有最大值.
(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神.)
例2.求的值域.
变式1. 若,求的最小值.
在运用基本不等式解题的基础上,利用几何画板展示的函数图象,使学生再次感受数形结合的数学思想.
并通过例2及其变式引导学生领会运用基本不等式的三个限制条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略.
练一练(自主练习):
1.已知,且,求的最小值.
2.设,且,求的最小值.
5.归纳小结,反思提高
基本不等式:若,则(当且仅当时,等号成立)
若,则(当且仅当时,等号成立)
(1)基本不等式的几何解释(数形结合思想);
(2)运用基本不等式解决简单最值问题的基本方法.
6.布置作业,课后延拓
(1)基本作业:课本P100习题组1、2题
(2)拓展作业:请同学们课外到阅览室或网上查找基本不等式的其他几何解释,整理并相互交流.
(3)探究作业:
现有一台天平,两臂长不相等,其余均精确,有人说要用它称物体的重量,只需将物体放在左右托盘各称一次,则两次所称重量的和的一半就是物体的真实重量.这种说法对吗?并说明你的结论.